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This work presents the design and analysis of the piezoelectric active control of damped
sandwich beams. This is done using a speci"c "nite element, able to handle sandwich beams
with piezoelectric laminated surface layers and viscoelastic core. The piezoelectric direct and
converse e!ects are accounted for through additional electrical degrees of freedom,
condensed at the element level. The frequency dependence of the viscoelastic material
properties is modelled using additional dissipative variables resulting from an anelastic
displacement "elds model. A complex-based modal reduction is then proposed and an
equivalent real representation of the reduced-order system is constructed. The control
design and performance are then evaluated using three control algorithms applied to the
reduced-order model, namely, linear quadratic regulator (LQR), linear quadratic gaussian
(LQG) and derivative feedback. To guarantee control feasibility and prevent piezoelectric
material depoling, these algorithms are used in an iterative form to account for maximum
control voltage. Parametric analyses of an actively controlled damped sandwich beam
indicate that LQR controllers improve some selected modal dampings, while retaining the
passive damping of uncontrolled modes. Derivative feedback controllers are less e!ective
than an LQR one, but their well-known spillover destabilizing e!ects are attenuated by the
increase of stability margins provided by the viscoelastic damping. It is also shown that
LQG controllers may perform as well as LQR ones. Moreover, the delay e!ect induced by
the state estimation of LQG associated with the passive attenuation lead to a damping
performance similar to that of LQR with less control voltage. The parametric analyses and
the comparative study of control strategies for the active control of damped sandwich
beams, accounting for frequency dependence of viscoelastic material properties, are some of
the originalities of this work. The others are the analysis of the LQG algorithm and the state
space real representation of complex modal reduced models for hybrid piezoelectric-active
viscoelastic-passive vibration control which are presented for the "rst time.

( 2001 Academic Press
1. INTRODUCTION

Sandwich structures with embedded viscoelastic materials are widely used in aerospace and
automotive industries due to their bene"cial performance in attenuating structural
vibrations. The vibratory energy is dissipated through the shear strains induced in the soft
viscoelastic layer by the relative displacements of the sti!er surface layers. It is well-known
that the damping performance of such structures depends on the geometrical and material
properties of each layer [1]. Also, the damping performance is generally limited by
geometrical and weight constraints. Consequently, to improve the damping of some
selected vibration modes, one may consider active means, such as piezoelectric actuation.
Indeed, piezoelectric actuators associated with appropriate control systems are known to be
0022-460X/01/390653#25 $35.00/0 ( 2001 Academic Press
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e!ective to control low frequency and amplitude vibrations. The main di$culties when
associating such active and passive damping mechanisms are that active controllers are
generally very sensitive to system changes and the viscoelastic materials properties are
frequency- and temperature-dependent. Hence, to design a su$ciently reliable and robust
control system, both piezoelectric and viscoelastic materials must be well modelled.

Recently, some methods, such as fractional derivatives, anelastic displacements "elds
(ADF), Golla}Hughes}McTavish (GHM) and Yiu's, were proposed to model the frequency
dependence of sti!ness and damping properties of viscoelastically damped structures [2].
Comparison between GHM, ADF and iterative modal strain energy (MSE) models has
shown that both GHM and ADF, though increasing the system dimension, are superior to
MSE for time-domain analyses of highly damped structures [3]. Also, while GHM and
ADF models are equivalent and lead to similar results, ADF yields to accurate damping
prediction while minimizing additional degree of freedom (d.o.f.) and the number of
parameters to be curve-"tted to material master curves [3]. That is why an ADF model is
retained here. Although operational temperature variations can lead to high changes in the
active control performance [4, 5], here, the temperature dependence is considered less
important, since temperature changes are slow compared to the structural dynamics.
Hence, the temperature will be considered known but constant.

Most control algorithms used in hybrid active}passive damping generally do not account
for viscoelastic material property variations. Nevertheless, Baz [6] and Crassidis et al. [7]
proposed, respectively, H

2
and H

=
robust control algorithms to ensure the stability of an

active constrained layer (ACL) treatment under viscoelastic property uncertainties due to
temperature variations. Lam et al. [8] applied an LQR algorithm associated with the GHM
frequency-dependence model to study several hybrid damping con"gurations. The same
approach was applied by Liao and Wang [9] for the parametric analysis of ACL
treatments. The drawback of the LQR control algorithm is that it requires the measurement
of all state variables. This may be remedied for by considering an optimal state observer,
leading to an LQG regulator, which, to the authors knowledge, has not yet been applied to
hybrid damping treatments but is retained in the present work. Analysis of an ACL
treatment was also made by Lesieutre and Lee [2] using the ADF model with
a proportional}derivative controller. However, as in reference [9], a single-term model was
considered, leading to unreal material behavior. It was shown in reference [2] that although
proportional and derivative controllers su!er from spillover e!ects, viscoelastic damping
increases their stability margins thus preventing destabilization. Friswell and Inman [4]
used a positive position feedback (PPF) control algorithm associated with an iterative MSE
viscoelastic model to analyze a hybrid damping treatment in thermal environments.

This work aims to present design and parametric analyses of active vibration control of
damped sandwich beams. This is made using the "nite element (FE) proposed in reference [10],
which extends that in reference [11] to handle sandwich beams with piezoelectric laminated
surface layers and viscoelastic core. The piezoelectric direct and converse e!ects are
represented through additional electrical d.o.f., condensed at the element level. The
frequency dependence of the viscoelastic material properties is modelled using the internal
variables-based ADF model. Three control strategies are studied, namely LQR, LQG and
derivative feedback. They are used in an iterative form to account for maximum control
voltage, in order to guarantee control feasibility and prevent piezoelectric material
depoling.

It is worthwhile emphasizing that the analysis of LQG algorithm and the state space real
representation of complex modal reduced models for hybrid piezoelectric-active
viscoelastic-passive vibration control are presented for the "rst time. The parametric
analysis and the comparative study of control strategies for the active control of damped



Figure 1. Piezoelectric laminated sandwich beam "nite element.
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sandwich beams, accounting for frequency dependence of viscoelastic materials properties,
are the remaining originalities of this work.

2. SANDWICH BEAM SECOND ORDER MODEL CONSTRUCTION

An adaptive sandwich beam, composed of two laminated upper a and lower b surface
layers, with, respectively, n and m elastic or piezoelectric sub-layers, and a viscoelastic core
c is considered (Figure 1). The mechanical sti!nesses of the face sub-layers are composed of
membrane and bending strains contributions (Euler}Bernoulli theory), while the core
contains also a shear sti!ness (Timoshenko theory). Since this paper focuses on the control
design and performance analysis, the formulation will be only brie#y presented here. Details
can be found in reference [10].

2.1. FINITE-ELEMENT MODEL

The present FE model assumes Lagrange linear shape functions for the mean uN and
relative uJ axial displacements of the surface layers and Hermite cubic ones for the transverse
de#ection w. Electrical di!erence of potentials <

kj
(k"a, b; j"1,2, (nL , mL )) are considered

only in the nL , mL piezoelectric sub-layers of the surface layer k and are assumed constant and
uniform in the element (Figure 1). With these assumptions, the following elementary d.o.f.
column vector q; e may be written:

q; e"col(uN
1
,w

1
,w@

1
, uJ

1
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2
,w
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, w@
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, uJ
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where ( )@ implies the x-space derivative, uN "(u
a
#u

b
)/2 and uJ "u

a
!u

b
.

Discretization of the inertial, electromechanical and external virtual works of
d'Alembert's variational formulation, leads to the equations of motion [10]

A+
k

+
j

M< ekj
#M< ecB q;G

e
#A+

k

+
j

K< ekj
#K< ecB q; e"F< em , k"a, b ; j"1,2, (n,m). (2)

where ( K ) stands for the second time-derivative. M< ekj
and M< ec are the elementary mass

matrices of the k
j
th face sub-layer and core respectively. They are due to contributions

related to translations in the x and z directions, and rotations. Lamination of the surface
layers induce also translation}rotation coupling terms. The sti!ness matrices of the face
sub-layers K< ekj

may be decomposed into mechanical K< ekjm , piezoelectric K< ekjme and dielectric
K< ekj e terms, such that

K< ekj
"K< ekjm!K< ekjme!K< e T

kjme#K< ekj e , (3)
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whereas that of the core K< ec is composed only of a mechanical contribution. These matrices
are de"ned in terms of the generalized displacements, uN , uJ and w, in reference [10]. F< em is
a mechanical point forces vector added a posteriori to the discretized system.

Since the mechanical and electrical d.o.f. are coupled statically only [10] and,
decomposing the element d.o.f. vector q; e in mechanical d.o.f. qe and unknown (sensor)
Ve

S and applied (actuator) Ve
A voltages so that q; e"col(qe , V

e
S ,V

e
A), system (2) may be

condensed as

MeqK
e
#[(Ke

fm!Ke
fmeSK

e~1
feS Ke T

fmeS)#Ke
c] qe"Fe

m#Fe
e , (4)

where Ke
f represents the sum of all the sti!ness matrices of faces sub-layers. The applied

voltages Ve
A provide an equivalent electrical load vector Fe

e"Ke
fmeAVe

A , and the unknown
potentials Ve

S are related to the mechanical d.o.f. qe by Ve
S"Ke~1

feS Ke T
fmeS qe .

Assembling the condensed system (4) for all elements produces

MqK#Dq5 #(Kf#Kc) q"Fm#Fe , (5)

where D is a viscous damping matrix added a posteriori and q5 is a velocity vector.

2.2. SECOND ORDER AUGMENTED ADF SYSTEM

It is known that the viscoelastic material properties depend on the excitation frequency
and operating temperature. To account for the frequency dependence of the viscoelastic
material, Lesieutre's ADF model [2] is used. However, the operating temperature is
assumed constant and the self-heating of the viscoelastic material is neglected. Temperature
variation e!ects on viscoelastically damped beams have been investigated elsewhere [5]. By
supposing a frequency-independent Poisson ratio, discretized equations of motion (5) can
be rewritten in the frequency domain as

M!u2M#juD#[Kf#GH(u)K1 c]N q8 "F3 m#F3 e , (6)

where GH(u) is the complex frequency dependent shear modulus of the viscoelastic layer and
( 8 ) stands for Fourier-transformed variables. Including n series of ADF dissipative d.o.f.
qd

i (i"1,2, n) and re-transforming to the time domain leads to the following augmented
system [3]

M1 q6G#D1 q60 #K1 q6 "F1 m#F1 e , (7)

with

M1 "C
M 0

0 0D , D1 "C
D 0

0 DddD , F1 m"G
Fm

0 H , F1 e"G
Fe

0 H ,

K1 "C
Kf#K=c Kqd

KT
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and K=c "G
=

K1 c , G
=
"G

0
(1#+

i
D
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i
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i
D
i
)/D

i
. Material parameters G

0
and

(D
i
, X

i
) (i"1,2, n) are evaluated by curve-"tting of the measurements of GH(u) [3]. K is

a diagonal matrix of non-vanishing eigenvalues of K=c and T is the corresponding
eigenvectors matrix.

3. STATE SPACE MODEL CONSTRUCTION

To apply the augmented "nite-element model presented above to an optimal control
design, system (7) needs to be transformed into a state space form. Therefore, a state vector
x is formed by the augmented vector q6 and the time derivative of the mechanical d.o.f. vector
q5 . The time derivatives of the dissipative d.o.f. qd

i are not considered since these variables are
massless. From equation (7), this state is subjected to mechanical and electrical loads
F1 m and F1 e , where the latter are proportional to the voltages applied to the piezoelectric
actuators.

3.1. STATE SPACE AUGMENTED ADF SYSTEM

The second order system (7) may be transformed to the following state space one:

x5 "Ax#Bu#p, y"Cx, (8)

where each column of the control input matrix B represents the piezoeletric actuation loads
distribution for a unitary voltage and the control input u is a column vector formed by the
voltages V

A
applied to the actuators. The perturbation vector p is the state distribution of

the mechanical loads F
m

and the output vector y is, generally, composed of the measured
quantities, written in terms of the state vector x through the output matrix C. The system
dynamics are determined by the square matrix A. Matrices and vectors of system (8) are

A"

0 0 2 0 I

(X
1
/C

1
)TT

!X
1
I 0 0

F } 0

(X
n
/C

n
)TT 0 !X

n
I 0

!M~1(Kf#K=c ) M~1K=c T 2 M~1K=c T !M~1D

, x"C
q6
q5 D ,

p"C
0

M~1FmD , B"C
0

M~1FHe D , C"[CqN CqR ] , u"VA , (9)

where FHe is the voltage factored-out electrical loads vector and CqN and CqR are the output
matrices relative to the augmented d.o.f. vector q6 and mechanical d.o.f. derivatives q5 ,
respectively. It is worthwhile noting that, although the unknown electrical d.o.f. (sensor
voltages) were condensed in the FE model, they may be considered as measured output by
using the relation between VS and q to de"ne the output matrix C.

3.2. COMPLEX MODAL REDUCTION

The dimension of the state space system (8) is too high for use in an optimal control
design. Thus, a complex-based modal reduction is applied to this system. It neglects the
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contributions of the viscoelastic relaxation modes and the elastic modes related to
eigenfrequencies out of the frequency range considered. Hence, the eigenvalues matrix
K and left Tl and right Tr , eigenvectors of equation (8) are "rst evaluated from

ATr"KTr , ATTl"KTl , (10)

so that TT
l Tr"I, then decomposed as

K"

K
r

0 0

0 K
n

0

0 0 K
d

, Tl"[Tlr Tln Tld], Tr"[Trr Trn Trd], (11)

where K
r

is the retained elastic eigenvalues matrix and Tlr and Trr are its left and right
corresponding eigenvectors matrices respectively. K

n
and K

d
correspond to the neglected

elastic and relaxation eigenvalues respectively. Tln , Trn , Tld and Trd are their corresponding
left and right eigenvectors. Consequently, the state vector is approximated as x+Trrxr and,
using equations (10) and (11), system (8) may be reduced to

x5 r"K
r
xr#TT

lrBu#TT
lrp, y"CT

rr
x
r
. (12)

3.3. REAL REPRESENTATION OF THE COMPLEX MODAL REDUCED MODEL

The main disadvantage of the reduced state space system (12) is that its matrices are
complex. Therefore, one may prefer to transform it to a real system before using it in the
control design. Fortunately, since all overdamped (relaxation) modes were neglected, all
elements of system (12) are composed of complex conjugates, such that

Kr"
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(13)

where j
j
( j"1,2, r) are the retained elastic eigenvalues and jM

j
their complex conjugates.

To construct a real representation of the state space system (12), one may use a state
transformation x;"Tcxr , where Tc is de"ned as [12]
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so that the real state space system equivalent to equation (12) is

x; 0 "A< x;#B< u#p; , y"C< x; . (15)
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where
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It is clear that the eigenvalues of the real matrix A< are exactly the elements of K
r
. In form

(15), the new state variables x; represent the modal displacements and velocities.

4. CONTROL DESIGN

The analysis of the LQR algorithm for the hybrid piezoelectric-active viscoelastic-passive
vibration control was presented in previous papers [3, 10]. Here, the objective is to analyze
and compare the hybrid damping performance of other control algorithms, which is done
for the "rst time. Hence, in this section, three control strategies are brie#y presented, namely
LQR, LQG and derivative feedback. It is clear that, for practical applications, these
algorithms must be used in an iterative form to account for maximum control voltage, since
piezoelectric actuators can be depoled by high oscillating voltages.

4.1. CONSTRAINED OPTIMAL CONTROL STRATEGY

The LQR optimal control algorithm consists of minimizing the functional

J"1
2 P

=

0

(x; TQx;#uTRu) dt. (16)

subjected to linear constraints (15). This minimization yields a linear full-state feedback
control law u"!Kgx; , where the control gain matrix Kg"R~1B< TP is evaluated by solving
for P the following algebraic Riccati equation

A< TP#PA<!PB< R~1B< TP#Q"0. (17)
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Evidently, the performance of this controller depends on the state Q and input R weight
matrices. While Q de"nes the relative weight of each state variable, R de"nes the relative
weight of each actuator voltage. The latter may then be adjusted to limit the maximum
voltage. The iterative algorithm developed and presented in reference [5] is used here to
perform such "tting automatically. However, the voltage limitation leads to
a perturbation-dependent performance of the controller [5].

4.2. OPTIMAL FULL-STATE OBSERVER AND CONTROLLER

The full-state feedback control using the LQR algorithm is clearly only feasible when all
state variables can be measured. Since, generally, this is not the case, one must estimate the
state variables using the measured ones. For that, let one de"ne the Luenberger state
observer [13] as

x80 "A< x8 #B< u#p;#Ke (y!C< x8 ), x8 (0)"0, (18)

where x8 is the estimated state vector and Ke is the observer gain matrix. The Luenberger
observer simulates real system (15) and penalizes the di!erence between the measured
output y and the estimated output C< x8 . Input w and output v noise contributions are added,
respectively, to state excitation p and output measurement y in equation (15). Hence,
replacing y"C< x;#v in equation (18), then subtracting the resulting equation from the state
space system (15a), with added noise term w, leads to

e5 "(A<!KeC< )e#w!Kev, (19)

where e"x;!x8 states for the observation error and has initial value e (0)"x; (0). One
notices, from equation (19), that the observation error e is asymptotically stable if the
eigenvalues of A<!KeC< , also named observer poles, have negative real parts. It can be also
shown [13] that if the system is completely observable, one might place the observer poles
arbitrarily far in the complex left mid-plan to obtain fast error convergence, thus fast state
estimation. However, this yields to large Ke elements that may amplify the measurement
noise v. Hence, a compromise between noise ampli"cation and state estimation velocity
must be found.

The well-known Kalman}Bucy Filter (KBF) allows the observer to evaluate gain matrix
Ke for white input w and output v noises [13]; that is, for expectations E[w]"0 and
E[v]"0. Then, the optimal gain Ke is obtained through minimization of the following
quadratic cost function

J
e
"hTPeh (20)

for any arbitrary vector h and Pe"E[eeT]. The optimal observer covariance matrix Pe is
the solution of the following algebraic Riccati equation

A< Pe#PeA<
T
!PeC<

TV~1C< Pe#W"0. (21)

Here W and V are the input w and output v noises covariance matrices. The optimal gain
Ke is then de"ned as

Ke"PeC<
TV~1. (22)
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From equation (19), one notices that the matrix V penalizes the observer gain to limit the
ampli"cation of the output noise through the term Kev. Whereas, for noisy inputs, the
matrix W increases the observer gain to damp quickly the error this noise produces.

Assembling system (15a), with added noise terms and for u"!Kgx8 , and equation (19)
yields the coupled system

G
x;0
e5 H"C

A< !B< Kg B< Kg

0 A<!KeC< D G
x;

eH#G
p;

0H#C
I 0

I !KeD G
w

vH , (23)

where equation (15b) is still valid. This combination of an optimal LQR controller with
a KBF optimal observer is known as the LQG algorithm. Owing to the block triangular
form of this system, one may design the LQR optimal controller alone, then use it to design
the optimal observer. However, the stability of coupled system (23) is evidently dependent
on the stability of both sub-systems.

4.3. DERIVATIVE FEEDBACK CONTROLLER

An alternative to the complexities involved in the calculations of an optimal observer and
controller is a simple derivative feedback. Considering that the output vector y can be
measured, one may feed it back after ampli"cation to the actuator as a control voltage
u"!Kdy. Notice that the output vector is a linear combination of the state variables
(y"C< x; ), which are themselves a combination of the "nite-element model variables q and
their time derivatives. Hence, using the decomposition of the output matrix C into CqN and
CqR (cf. equation (9)), leads to

y"C< x;"C< TcT
T
lr x"CqN q6 #CqR q5 . (24)

To get a derivative control, the output is set to a combination of time derivatives only, so
that CqN"0. Transforming back the state space system (8) to a second order one, using
equation (9) together with u"!KdCqR q5 , one notices that such a derivative control is
equivalent to the substitution, in system (7), of the following electrical loads vector

Fe"!FHe K
d
CqR q5 . (25)

Consequently, when moved to the l.h.s. of equation (7), this leads to a modi"cation of its
damping matrix which becomes

D1 H"C
D#K

d
FHe CqR 0

0 DddD . (26)

It is clear that the positive de"niteness of the additional damping matrix K
d
FHe CqR ,

provided by the active controller, is a consequence of the relation between input FHe and
output CqR vectors. Since FHe and CqR are relative to the mechanical d.o.f. that are a!ected by
the piezoelectric actuator and those that contribute to the output, respectively, the increase
of modal damping is dependent on the relative positions of the piezoelectric sensor and
actuator.

5. NUMERICAL RESULTS

In this section, the piezoelectric active control of a cantilever sandwich beam, passively
damped by its viscoelastic core, is studied. Figure 2 shows the con"guration of the cantilever



Figure 2. Cantilever sandwich beam with bonded piezoelectric actuator and sensor.

TABLE 1

Properties of the damped sandwich beam with bonded piezoelectric patches

Aluminum PZT5H ISD112

Modi"ed Young's modulus (GPa) 79)8 65)5 various
Density (kg m~3) 2690 7500 1600
Modi"ed e

31
constant (C m~2) * !23)2 *

Modi"ed e
33

constant (F m~1) * 1)54]10~8 *

Length, L (mm) 280 a"50 (d
c
"35) 280

Thickness, h
b
(mm) 3 h

p
"0)5 h

v
"0)1

Width, b (mm) 25 25 25
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sandwich beam. Its material and geometrical properties are given in Table 1. The objective
is to use the piezoelectric patches to increase actively the damping of the "rst bending
modes of the passively damped beam. First, a parametric analysis of the active and passive
control performances, using LQR control algorithm, is performed to "nd the optimal
geometric con"guration. Then, derivative feedback and LQG controllers are applied to this
optimal con"guration to compare the three controllers' performances.

The frequency dependence, in the range 20}5000 Hz, of the ISD112 viscoelastic material
at 273C is represented by a three-series ADF model, with the parameters. G

0
"0)50 MPa,

D"[0)746, 3)265, 43)284] and X"[468)7, 4742)4, 71532)5] rad/s. These optimal ADF
parameters yield a good approximation to the measured material master curves in the
frequency range of interest as shown in Figure 3. Indeed, both elastic modulus G@ and loss
factor g evaluated using ADF parameters (dashed lines) match well with measured ones
(solid lines). The model reduction presented previously is performed by keeping the "rst "ve
bending eigenmodes of the damped sandwich beam. Since the corresponding complex
reduced model has been validated in a previous paper [10], the focus here is on its
equivalent real representation which is used for the "rst time. However, from section 3.3,
one notices that their dynamical behavior must be equivalent. Figure 4 shows the frequency
response function between the perturbation force and piezoelectric sensor using the full
model (8) and the real reduced-order model (15). One notices that responses match well in
the frequency range of interest.

5.1. LQR OPTIMAL CONTROL OF THE SANDWICH DAMPED BEAM

To improve actively the damping of the "rst three bending modes, the piezoelectric
actuator bonded on the upper surface of the sandwich beam is combined to an iterative
LQR algorithm [5], with parameters Q"diag(1, 1, 1, 0,2, 0) and R"cI. The factor c is



Figure 3. Elastic modulus G@ and loss factor g of 3M ISD112 viscoelastic material evaluated using three series of
ADF parameters (dashed lines) and measured ones (solid lines).

Figure 4. Frequency response function between the perturbation force and piezoelectric sensor using the full
model (solid lines) and real reduced-order model (dashed lines).
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evaluated automatically in the LQR algorithm to limit the control voltage to 250 V, leading
to a maximum electrical "eld of 500 V/mm in the piezoelectric actuator. The piezoelectric
sensor, although not used in this case, is preserved for future comparisons. A perturbation
transverse force is applied to the beam tip, whose de#ection is measured and restrained to
1)5 mm.

A parametric analysis of the passive damping, provided by the viscoelastic layer, and
hybrid damping, which is the passive one increased by the active controller, is performed.
This is achieved by varying the piezoelectric patch length in the range 20}70 mm and the



Figure 5. Sum of the "rst three open-loop modal damping factors of the sandwich beam.

Figure 6. Sum of the "rst three closed-loop modal damping factors of the sandwich beam.
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viscoelastic core thickness in the range 0)01}2 mm. To guarantee adequate levels of
damping for the "rst three bending modes, parameters optimization is based on the sum of
these three modal damping factors. Figure 5 shows that increase of piezoelectric patch
length has little e!ect in passive damping. In fact, due to an augmentation of the surface
layer sti!ness, small improvement in the second and third modal damping is obtained.
However, this does not enhance the passive damping of the "rst mode and is not observable
in Figure 5. This "gure shows also that the passive damping is optimal for relatively thin
viscoelastic layers (h

v
"0)1 mm) and decreases for both very thin (h

v
"0)01 mm) and thick

(h
v
"2 mm) layers.
The sum of the "rst three closed-loop modal damping factors of the sandwich beam is

presented in Figure 6 for several piezoelectric patch lengths and viscoelastic core
thicknesses. It appears that the hybrid damping performance is optimal for long actuators
(a"70 mm) and relatively thin viscoelastic cores (h

v
"0)1 mm), although it is adequately

e!ective in the range 40(a(70 mm and 0)1(h
v
(2 mm. Nevertheless, the damping

gain provided by the active controller, de"ned as f
a
"f

h
/f

p
!1, is optimal for very thin

viscoelastic cores, as shown in Figure 7. This is mainly due to the fact that passive damping



Figure 7. Sum of the "rst three damping gains provided by the piezoelectric actuator.

TABLE 2

Optimal results of hybrid control of damped sandwich beam

f
1

(%) f
2

(%) f
3

(%) f
4

(%) f
5

(%) t
s

(s) ymax (mm)

Passive 5)01 13)36 16)17 15)94 15)57 0)60 1)50
Hybrid 24)85 13)63 16)36 15)94 15.57 0)10 1)07
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is not e!ective in that case. However, this quantity gives a good measure of the advantage of
considering an active controller in addition to a passive damping.

To yield both hybrid and passive performant damping properties, optimal parameters are
set to maximize the sum of open- and closed-loop damping factors, which are already the
sum of the corresponding "rst three modal dampings. The optimal damping performances
of the open- and closed-loop sandwich beam are presented in Table 2. The latter shows that,
for optimal parameters, that is for a"70 mm and h

v
"0)1 mm, the "rst mode damping is

increased by 400% and the non-controlled fourth and "fth modes are not excited by the
controller. The damping factors of the second and third modes are just slightly improved by
the active control.

For the optimal parameters, frequency- and time-domain responses of the sandwich
beam are evaluated in both open- and closed-loops. Hence, the frequency response function
between the transverse excitation force and the tip de#ection of the beam is evaluated and
shown in Figure 8. It shows that the active controller produces a decrease of 14 dB in the
amplitude of the "rst resonance, compared to the passive case. Moreover, it preserves or
enhances the passive damping of the other modes. It should be noticed, in Figure 8, that the
last four modes considered are highly damped, as also shown in Table 2, so that they are less
observable. This passive damping performance prevent instabilities due to spillover.

The open- and closed-loop transient responses of the sandwich beam tip de#ection are
presented in Figure 9. It should be noticed that the closed-loop response settles much faster
than the open-loop one. In fact, as shown in Table 2, the settling time t

s
and maximum

amplitude ymax of the closed-loop beam transient response are reduced by 83% and 29%,
respectively, compared to those in the open loop. The control voltage applied to the
piezoelectric actuator to obtain this performance is shown in Figure 10. It is clear that
the control voltage subsides as fast as the closed-loop response. Also, as required by
the iterative optimal control algorithm, the control voltage is limited to 250 V.



Figure 8. Open- and closed-loop FRF of the sandwich beam, measured by the tip de#ection and loaded by the
perturbation transverse force, for optimal parameters a"70 mm and h

v
"0)1 mm: *, passive; - - -, hybrid.

Figure 9. Open- and closed-loop transient responses of the sandwich beam tip de#ection for optimal para-
meters a"70 mm and h

v
"0)1 mm: *, passive; - - -, hybrid.
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5.2. DERIVATIVE CONTROL OF THE OPTIMAL BEAM CONFIGURATION

The main drawback of the LQR algorithm is the need to measure all state variables to
construct the full-state feedback. Thus, in this section, the much simpler approach of
derivative feedback is applied to the optimal case of the cantilever sandwich beam with
bonded piezoelectric actuator and sensor of Figure 2, that is for a"70 mm and
h
v
"0)1 mm. To this end, two measured outputs are considered, namely the time-derivative

of the beam tip de#ection wR
L

and that of the voltage <Q
S

of the piezoelectric sensor bonded
on the bottom surface of the sandwich beam (Figure 2).



Figure 10. Piezoelectric actuator control voltage for optimal parameters a"70 mm and h
v
"0)1 mm.

Figure 11. Root locus between the velocity sensor on the beam tip and the piezoelectric actuator (open-loop
poles, ], and zeros, s, and closed-loop poles, #, for K

d
"605).
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5.2.1. ¹ip de-ection velocity feedback

First, a control voltage proportional to the time derivative of the sandwich beam tip
de#ection wR

L
is considered, such that <

A
"!K

d
wR
L
. It is clear from equation (26) that

higher control gains lead to higher additional damping factors and, provided that the
actuator/sensor combination increases the damping of a given set of modes, the total
damping will increase with the control gain. However, since the control voltage is
proportional to the control gain, it is also clear that large control gains yield to high control
voltages. Hence, these should be limited to the maximum voltage that can be applied to the
piezoelectric actuator.

Figure 11 shows the root locus between a point velocity sensor on the tip of the beam and
the piezoelectric actuator. In this "gure, the increase of the control gain K

d
moves the

open-loop poles, ], toward the open-loop zeros, s. Moreover, the modal damping
Im(s)/Re(s) increases when the poles move away from the imaginary axis Re(s)"0.
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Consequently, from Figure 11, one notices that this control law allows one to increase
greatly the "rst and fourth modal dampings and, for large control gains, that of the second
mode. However, it reduces the third and "fth modal dampings, for all control gains, such
that their destabilization is only prevented by their passive damping. Thus, one notices that
the viscoelastic passive damping increases the stability margins of the modes excited by the
active control. The closed-loop poles, #, for the maximum control gain considered
(K

d
"605) are also presented in Figure 11. The control gain K

d
is limited to prevent voltage

saturation in the piezoelectric actuator (in this case, 250 V). One notices that, although from
Figure 11 this control law may improve the second modal damping, the voltage limitation
leads to its decrease.

The responses of the "rst "ve bending modes, in the frequency domain, are presented in
Figure 12, for three control gains 137, 302 and 605. One notices that, as observed previously,
the "rst and fourth modes are well damped, compared to the open-loop response (K

d
"0),

whereas the other modes are excited for the three control gains, as expected from the
analysis of Figure 11. The additional modal dampings provided by the active controller are
presented in Table 3 (Gain wR

L
). This table shows that the modes 2, 3 and 5 are excited by

the active controller. That is, their modal dampings are reduced compared to the passive
damping. However, as observed also in Figure 11, the passive damping due to the
TABLE 3

Modal damping factors (%) for wR
L

and <Q
S

feedback at maximum gain

1 2 3 4 5
Passive 5)2 13)4 16)3 16)0 15)6

Gain wR
L

13)9 !2)6 !4)2 7)6 !7)3
Gain <Q

S
16)7 2)4 4)8 4)5 83)7

Figure 12. Open- and closed-loop FRF of the sandwich beam, measured by the piezoelectric sensor voltage and
loaded by the perturbation transverse force, for three velocity feedback control gains. K

d
values: *, 0; - - -, 137;

)} ) }, 302; )))))), 605.



Figure 13. Open- and closed-loop transient responses of the beam tip de#ection for three velocity feedback
control gains: K

d
values: )))))), 0; - - -, 137; ) } ) }, 302; *, 605.

Figure 14. Control voltages imposed to the piezoelectric actuator for three velocity feedback control gains. K
d

values: - - -, 137; ) } ) }, 302; *, 605.
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viscoelastic layer is su$cient to prevent destabilization of these modes, so that their total
damping factors are still positive.

The open- and closed-loop time-domain impulsive responses of the beam tip de#ection,
loaded by the perturbation transverse force, are presented in Figure 13, for the three control
gains considered. One notices that the settling time of the transient response of the beam tip
decreases with the control gain. For K

d
"605, the derivative feedback performances

are similar to those obtained with the LQR controller (Figure 9). However, to obtain these
performances while respecting the piezoelectric actuator voltage limitation (250 V), the
beam tip de#ection is limited here to 0)36 mm, that is, 24% of that considered for the LQR
controller (1)5 mm). Figure 14 shows the actuator control voltage for each control gain. It



Figure 15. Root locus between the piezoelectric sensor and actuator bonded on the opposite surfaces of the
sandwich beam (open-loop poles, ], and zeros, s, and closed-loop poles, #, for K

d
"!13)5]10~3).
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can be seen that, for K
d
"605, the control voltage is, indeed, limited to 250 V. In addition, it

presents fast oscillations representing the voltage for actively controlling the fourth mode.

5.2.2. Sensor voltage rate feedback

Here, the piezoelectric sensor, bonded on the bottom surface of the sandwich beam
(Figure 2), is used in the control loop. In this case, the time derivative of the voltage <

S
,

induced in the sensor by the beam de#ection, is measured, ampli"ed and fed back to the
actuator. Consequently, the control voltage is given by <

A
"!K

d
<Q
S
. In the previous case,

the voltage needed to cancel the "rst bending mode was opposite to the beam tip de#ection,
so that a negative-control feedback led to vibration damping. However, in the present case,
the beam de#ection induces opposite voltages in the piezoelectric patches. Thus, the control
gains must be negative. Indeed, the application of a control voltage of the same sign as the
sensor voltage leads to a bending cancellation. Figure 15 shows the root locus between the
piezoelectric sensor and actuator bonded on the opposite surfaces of the sandwich beam, for
control gains varying in the range [0,!R]. One may notice that all modes are damped for
small control gains K

d
, whereas for large ones, the "rst and "fth modes are destabilized. The

poles and zeros corresponding to the second mode almost cancel each other, so that
damping increase may only be small. The closed-loop poles, #, for the highest control gain
K

d
"!13)5]10~3 are also presented in Figure 15. Notice that those corresponding to the

"fth mode are in the real axis Im(s)"0, since this mode is overdamped by the controller.
In Figure 16, the frequency response of the sensor voltage, limited to the "rst "ve bending

modes, is presented for three control gains !4)5]10~3, !9)0]10~3 and !13)5]10~3.
As expected from the analysis of Figure 15, all modal damping is increased. Figure 16 shows
that the hybrid controller eliminates the resonance of mode 5 and highly attenuates those of
the modes 3 and 4. One may notice that, whereas the controller proportional to the tip
velocity improves the "rst mode in spite of the others, the present one increases all modal
damping (Table 3). This may be explained by the evident major contribution of the "rst
mode to the beam tip de#ection. This dependence of the damping performance on the
relative positions of actuator and sensor is the main disadvantage of the derivative



Figure 16. Open- and closed-loop FRF of the sandwich beam, measured by the piezoelectric sensor voltage and
loaded by the perturbation transverse force, for three voltage rate feedback control gains. K

d
values: *, 0; - - -,

!4)5e!3; ) } ) }, !9)0e!3; )))))), !13)5e!3.

Figure 17. Open- and closed-loop transient responses of the beam tip de#ection for three voltage rate feedback
control gains. K

d
values: )))))), 0; - - -, !4)5e!3; ) } ) }, !9)0e!3; *, !13)5e!3.
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controllers. In fact, in both cases studied here, the control performance of the "rst mode is
rather limited when compared to that obtained with the LQR algorithm.

The open- and closed-loop time-domain impulsive responses of the beam tip de#ection
are presented in Figure 17. One notices that the transverse vibrations of the sandwich beam
are damped only slightly faster then for the velocity feedback controller (cf., Figure 13). The
similarity of the settling performances of Figures 13 and 17 is mainly due to the similarity of
the closed-loop damping factors of the "rst mode for both controllers (Table 3), since the tip
response is almost only composed of this mode contributions. Figure 18 shows the control



Figure 18. Control voltages imposed to the piezoelectric actuator for three voltage rate feedback control gains.
K

d
values: - - - - -, !4)5e!3; ) } ) } ) }, !9)0e!3; **, !13)5e!3.
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voltages imposed to the piezoelectric actuator for the three control gains. As for the
previous case, the voltage is below the limit of 250 V. One can also see, from Figure 18, that
the fast oscillations of the control voltage are damped more quickly than for the previous
controller. This may be due to the fact that the higher-frequency modes are better damped
in this case.

This section has shown that derivative control, although simple to implement, is much
less e!ective than LQR. In addition, for non-collocated sensor and actuator (section 5.2.1),
this algorithm leads to a decrease in the damping performance of some modes. Nevertheless,
in practical active control design, it is usually di$cult to avoid excitation of some modes,
due to modelling errors or noise and delay in control electronics. Hence, the destabilization
e!ect of tip de#ection velocity feedback shows how the presence of some passive damping is
important to prevent total destabilization of the excited modes. On the other hand,
although the almost collocated derivative control of section 5.2.2 does not excite the modes
considered, it provides also very poor damping performance. This is due to the fact that
optimization of the damping of some selected modes is very dependent on the relative
actuator/sensor position and the passive damping.

5.3. LQG CONTROL OF THE OPTIMAL BEAM CONFIGURATION

In this section, the optimal full-state observer presented previously (section 4.2) is applied
to the control of the sandwich beam of Figure 2 with the optimal parameters a"70 mm
and h

v
"0)1 mm. The interest of considering an LQG controller is to obtain the control

parameterization, robustness and performance of LQR while measuring only the output y,
instead of all state variables. Since one may design the LQR controller alone and then
couple it with a Kalman Filter, the approach of section 5.1 will be used to evaluate the
control gain Kg and then, for given input W and output V noise covariances (scalars in this
case), system (23) is constructed. The main di$culty introduced by the observer is the
coupling between its own dynamics with that of the mechanical system. Moreover, since the
initial conditions of all state variables are not known, the initial observer error is
e(0)"x; (0). Consequently, as long as the observer error does not disappear the controller



Figure 19. Transient response of the sandwich beam controlled by an LQG with output noise covariance
V"1: *, passive; - - -, hybrid LQR; ) } ) }, hybrid LQG.

Figure 20. Control voltage for the LQG controller with output noise covariance V"1: *, LQR; - - -, LQG.
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will not be able to control the beam. In the opposite, if the initial state x; (0) is known, the
initial observer error vanishes (e(0)"0) and the LQG closed-loop response is equivalent to
that of the LQR.

Considering the practical case, where the initial state is unknown, the responses of the
system, uncontrolled and controlled by LQR and LQG controllers, are compared for
several output noise covariances V. The input noise covariance is "xed to W"10~5.
Figures 19 and 20 present the transient output response and control voltage for V"1.
Figure 19 shows that the LQG open- and closed-loop responses are the same, meaning that
the LQG controller is not e!ective for this output noise. This may be explained by the fact
that, since V is relatively large, corresponding to a noisy output measure, the observer gain
remains small to prevent injection of this noise in the system. Consequently, the observer
error is damped more slowly than the LQR closed-loop system. Thus, the LQG control
voltage u"!Kgx8 "!Kg(x;!e) is almost nil, as shown in Figure 20, and does not a!ect
the system.



Figure 21. Transient response of the sandwich beam controlled by a LQG with output noise covariance
V"10~8: *, passive; - - -, hybrid LQR; ) } ) }, hybrid LQG.

Figure 22. Control voltage for the LQG controller with output noise covariance V"10~8:*, LQR; - - -, LQG.
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Reducing the output noise covariance to V"10~8, the observer error converges quickly
to zero and the state is estimated before being damped, as shown in Figure 21. However, for
a performance similar to that of the LQR, the control voltage of the LQG controller is
smaller during the initial instants and then larger than that imposed by the LQR one
(Figure 22). This is due to the time needed for the observer to well estimate the state and
inject it in the control. Hence, as long as the error does not vanish, the estimated state x8 is
small compared to the real one x; , such that the control voltage u"!Kgx8 is also small.
Then, x8 converges to x; and the LQG control voltage increases to damp the system response.
This delay e!ect is quite advantageous in this particular case since the maximum control
voltage is reduced (Figure 22) for a similar damping performance.

To accelerate the state estimation, the output noise covariance is reduced to V"10~10.
However, as shown in Figures 23 and 24, although the state estimation is faster, the control
performance decreases and the maximum control voltage exceeds the actuator saturation



Figure 23. Transient response of the sandwich beam controlled by a LQG with output noise covariance
V"10~10: *, passive; - - -, hybrid LQR; ) } ) }, hybrid LQG.

Figure 24. Control voltage for the LQG controller with output noise covariance V"10~10:*, LQR; - - -, LQG.
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voltage of 250 V. In fact, the maximum output amplitude is smaller in this case (ymax"

1)40 mm against ymax"1)43 mm for V"10~8), although still larger than that of the LQR
controller (ymax"1)10 mm). Nevertheless, the settling time (t

s
"0)14 s) is higher than that

for V"10~8, which is equal to that of LQR (t
s
"0)12 s). Moreover, from Figure 24, one

notices that the observer excites the structure after estimation. This explains the higher
amplitude and settling time of the control voltage. The excessive augmentation of the
observer gain may lead to a control system sensitive to less or non-controlled modes.
Moreover, additional decrease of the output noise covariance does not improve either the
damping performance or the control voltage.

It is clear, from equation (23), that accounting for a state observer increases the system
dimension. However, as presented previously, the observer design does not a!ect the
control design, unless the modi"cation of the control voltage induced by the observer is
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accounted for. Hence, the controller and the observer may be designed separately. For the
particular case studied in this section, the LQG controller with V"10~8 leads to a similar
performance with less control voltage than the LQR one. However, it should be noticed
that, in practical cases, the output noise covariance is inherent to the signal processing
equipment and could not be chosen as a control parameter. Thus, performance as good as
for a LQR controller may not always be possible. Moreover, the LQG algorithm did not
account for modelling errors, since both observer and controller were based on perfect
knowledge of the system dynamics. Alternatively, this could be done using a robust
controller as presented in reference [7].

6. CONCLUSIONS

Using a "nite-element model able to handle sandwich beams with piezoelectric laminated
surface layers and viscoelastic core, the design and analysis of the piezoelectric active
control of damped sandwich beams has been presented. The piezoelectric direct and
converse e!ects were represented through additional electrical d.o.f., condensed at the
element level. Lesieutre's anelastic displacement "elds model was used to represent the
frequency dependence of the viscoelastic material properties. This led to an augmented state
space system, which was then reduced using a complex modal base that eliminates higher
frequencies elastic and overdamped relaxation modes. The complex reduced-order system
was then transformed to an equivalent state space real representation to allow system
analysis and control. Linear quadratic regulator, linear quadratic Gaussian and derivative
feedback algorithms were then applied to the reduced-order model. They were all used in an
iterative form to account for maximum control voltage, thus guaranteeing control
feasibility and preventing piezoelectric material depoling.

Parametric analyses of the open- and closed-loop damping performances of a cantilever
damped sandwich beam with bonded piezoelectric actuator and sensor were performed.
Actuator length and viscoelastic core thickness were optimized to yield good passive and
hybrid damping performances for the "rst three bending modes. Results have shown that
optimal performances are obtained for long actuators and thin viscoelastic cores. It was
also shown that, in the optimal hybrid con"guration, the LQR algorithm improves the "rst
modal damping by 400%, while retaining the passive damping of the remaining modes,
even uncontrolled ones. Application of a derivative feedback controller to the sandwich
beam optimal geometrical con"guration has led to less e!ective damping as compared to
the LQR controller. In fact, both tip de#ection and sensor voltage derivative feedback
controllers were not performant to control the "rst bending mode, although the latter was
able to control other modes. These results have con"rmed the dependence of this algorithm
performance on the actuator and sensor relative localization. However, the well-known
spillover destabilizing e!ects of derivative feedback controllers were attenuated by the
increase of stability margins provided by the viscoelastic damping. In addition, analysis of
the e!ect of an output noise in an LQG full-state optimal observer/controller was
performed. It was shown that using the LQG algorithm, the control parameterization,
robustness and performance of LQR may be obtained while measuring only the output y,
instead of all state variables. Moreover, for the speci"c case studied in this work, the delay
e!ect induced by the state estimation of LQG was quite advantageous, since a damping
performance similar to that of LQR was obtained with a reduced maximum control voltage.

Other hybrid active}passive damping con"gurations, obtained by several arrangements
of piezoelectric and viscoelastic layers, acting conjointly or separately, have been studied
and compared but will be presented in a forthcoming paper [14]. Also, other promising
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control algorithms, such as the PPF and independent modal space control (IMSC), are
being considered for active}passive damping treatments.
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